

GR-200 series -

The GR-200 Series is Toshiba's next generation of protection and control IED's, designed for transmission/distribution networks and providing a platform for distributed and renewable energy systems and railway applications. Flexible adaptation is enabled using extensive hardware and modular software combinations facilitating an application oriented solution.

Meeting your needs -

Extensive hardware and modular software combinations provide the flexibility to meet your application and engineering requirements.

Future upgrade paths and minor modifications are readily achievable on demand.

Powerful and wide application -

In addition to protection & control, GR-200 has been designed to meet the challenges and take advantage of developments in information & communications technology.

APPLICATION

GRZ200 distance protection is implemented on Toshiba's next generation GR-200 series IED platform and has been designed to provide distance protection and control applications for transmission lines and distribution feeders in all types of network. This powerful and user-friendly IED will provide you with the flexibility to meet your application and engineering requirements in addition to offering good performance, the high quality and operational peace of mind.

- EHV/HV/MV applications including parallel lines and underground cables
- Backup protection for generators, transformers and reactors
- Advanced fault location function
- Bay control and monitoring functions
- Communications within substation automation system, IEC 61850-8-1 [Station bus], IEC 60870-5-103 and IEC62439/PRP/HSR

FEATURES

Application

- Transmission lines including parallel lines and underground cables of different voltage levels
- Single-shot (single / three / single + three phase) or multi-shot (three phase) autoreclose for single breaker system and one-and-a half breaker system
- Backup protection for generators, transformers and reactors

• Functionality

- Eight settings groups
- Automatic supervision
- Metering and recording functions
- Time synchronization by external clock such as IRIG-B and system network

Communication

- System interface RS485, Fiber optic, 100BASE-TX/1000BASE-T, 100BASE-FX, 1000BASE-LX
- Multi protocol IEC 60870-5-103, IEC

FUNCTIONS

Protection

- Distance protection with six independent zones.
- Command protection distance schemes (PUP, POP, BOP and UOP with weak infeed and current reversal logic)
- Command protection non-directional and directional earth fault schemes (POP, BOP and UOP)
- Switch-on-to-fault (SOTF) and stub protection
- Power swing blocking
- Out-of-step trip protection
- Overcurrent guard scheme for distance protection
- Circuit breaker failure protection
- Non-directional and directional overcurrent protection for phase and earth faults
- Non-directional and directional negative phase sequence overcurrent protection
- Undercurrent protection
- Thermal overload protection
- Broken conductor detection
- Phase to neutral and phase to phase

61850 and IEC62439/PRP/HSR

- Security
- Password protection
- Flexibility
- Various models and hardware options for flexible application depending on system requirement and controlled object
- Combined 1A / 5A current inputs
- Multi range DC power supply: 24 to 60V / 110 to 250V
- Configurable binary inputs and outputs
- Programmable control, trip and alarm logic with PLC tool software

Human Machine Interface

- Graphical LCD and 26 LEDs
- 7 configurable function keys
- USB port for local PC connection
- Direct control buttons for open/close (O/I) and control authority (43R/L)
- Help key for supporting operation
- Monitoring terminals for testing

overvoltage protection

- Positive and negative sequence overvoltage protection
- Earth fault overvoltage protection
- Phase to neutral and phase to phase undervoltage protection
- Positive phase sequence undervoltage protection
- Under/overfrequency protection
- Inrush current detector
- Cold load protection

Control

- Single-shot (single / three / single + three phase) or multi-shot (three phase) autoreclose
- Synchronism voltage check
- Circuit breaker and isolator control
- Switchgear interlock check
- Programmable automatic sequence control

Monitoring

- VT failure detection
- CT failure detection
- Status and condition monitoring of primary apparatus

- Switchgear operation monitoring
- Plausibility check
- Measurement of I, V, P, Q, PF, f, Wh and varh
- Current and voltage circuit supervision
- Trip circuit supervision
- Fault locator
- HMI function
- Selection of HMI: Standard LCD / large LCD / Separate large LCD
- Large LCD supports single line diagram indication and touch-type operation
- 24 configurable tri-state LEDs selectable red/green/yellow
- 7 Programmable function keys for user demand operation
- Recording
- Fault record

- Event record
- Disturbance record
- Communication
- IEC 60870-5-103 / IEC 61850
- IEC62439 PRP/HSR
- General functions
- Eight settings groups
- Automatic supervision
- Metering and recording functions
- Time synchronization by external clock using IRIG-B or system network
- Password protection for settings and selection of local / remote control
- Checking internal circuit by forcible signal.
- Checking internal circuit using monitoring jacks.

APPLICATIONS

PROTECION

Time-Stepped Distance Protection

GRZ200 provides a maximum of six-zones of distance protection (Z1, Z1X, Z2, Z3, Z4, Z5). Each zone configurate blinder, reactance and directional (forward / reverse / non-directional) element can be individually set.

GRZ200 provides individual phase-fault measuring elements and earth-fault measuring elements for all types of fault. Directional measurement in GRZ200 is based on cross polarization with voltage memory to ensure dependable fault detection. GRZ200 uses an advanced distance measurement algorithm which achieves accurate fault impedance measurement over a wide range of frequencies.

GRZ200 provides measuring zones with quadrilateral characteristics or mho-based characteristics, as shown in Figures 1 and 2.

As shown in Figure 1, quadrilateral characteristics are composed of a reactance element, a directional element and a blinder element.

(b) Reverse zone

(c) Non directional zone

Figure 1 Quadrilateral Characteristics

As shown in Figure 2, mho-based characteristics are composed of a mho element, an offset mho element, a reactance element, and a blinder element for phase fault protection and earth fault protection.

Figure 2 Mho-based Characteristics

Forward zones can be configured such that the reactance line takes a negative gradient when the terminal is sending power, which prevents the forward zone from overreaching for remote end faults combined with high load current.

By combination of multiple forward zones, GRZ200 can provide time-stepped distance backup protection for remote end busbars and adjacent lines.

To ensure that GRZ200 can provide reliable timedelayed tripping for close-up three-phase faults, the phase fault elements are reverse offset.

Reverse zones are used for local back-up protection for busbar faults or transformer faults.

The non-directional zone is used for time delayed backup protection covering all zones.

Zone1 Extension

When telecommunications cannot be applied, a Zone 1 extension (Z1X) protection is provided for high-speed protection of any fault along the whole length of the protected line.

Earth Return and Mutual Coupling Compensation

Distance zone protection for earth fault protection adopts vectorial zero sequence current compensation to eliminate distance measuring errors due to the earth return of zero sequence current.

When GRZ200 is applied to a double circuit line, in order to eliminate the influences of zero sequence mutual coupling, the zero sequence current for the parallel line can be introduced. Reverse zones are not provided with zero sequence mutual coupling compensation for the parallel lines.

Load encroachment element characteristic

To prevent the unwanted operation of the distance protection during heavy load flow, GRZ200 provides a load encroachment element.

Application to Long and Short Lines

The large capacitance of a long transmission line can adversely affect the measurement of fault impedance. GRZ200 employs an advanced charging current compensation technique which gives significant improvement in impedance measurement for long transmission lines. The suitability of a distance relay for application to short lines is not determined by its minimum setting but rather by its measuring accuracy for high SIR conditions. GRZ200 provides highly accurate measuring elements suitable to be applied to short lines.

Command Protection

The following four schemes are available for distance protection using telecommunication.

- Permissive Underreach Protection (PUP)
- Permissive Overreach Protection (POP)
- Unblocking Overreach Protection (UOP)
- Blocking Overreach Protection (BOP)

POP and UOP are equipped with echo logic and weak infeed tripping functions and can be used in the protection of lines with weak infeed or no infeed terminals. An undervoltage element is incorporated for the weak infeed tripping function.

GRZ200 provides dedicated distance zones (ZCSF, ZCSR) for command protection. ZCSF is applied for forward faults and ZCSR for reverse faults.

In case that GRZ200 is applied using integral digital communication channels by fibre-optic links, or by electrical interfaces to a digital communication network, phase-segregated command protection is supported.

Switch-on-to-fault Protection and Stub Protection

Switch-on-to-fault (SOTF) protection is provided in order to detect faults that are present when a line or busbar is energized.

For 500 ms following circuit breaker closure, this function is effective to protect against any switch-onto-fault. A non-directional overcurrent element and/or distance measuring elements perform the SOTF protection.

Stub protection operates for a fault in a stub zone using an overcurrent element.

Power Swing Blocking

GRZ200 provides a power swing blocking (PSB) function to prevent false tripping by distance measuring elements during a power swing.

When a power swing is detected, all distance protection zones and protection using telecommunications can be blocked independently. When a zone is set to non-directional, the zone is not blocked.

A power swing condition is detected using two PSB elements with quadrilateral characteristics shown in Figure 3. The outer PSB element PSBOUT encloses the inner element PSBIN, the two elements being separated by a width of PSBZ. Further, GRZ200 provides PSBSZ and PSBGZ for phase fault measuring elements and earth fault measuring elements respectively. Their functions and characteristics are identical. PSBGZ provides phase-segregated characteristics.

If the impedance locus enters the PSBZ zone for more than a predetermined time (20 to 100ms), the PSB function will block the selected zones. The PSB function is reset after 500 ms when the impedance locus has moved outside the PSB elements.

GRZ200 can provide high speed tripping for faults which occur during a power swing condition, by utilising a well-proven, dedicated negative sequence directional element and any of the PUP, POP, UOP and BOP command schemes.

PSBZ: Impedance setting of PSB element

Figure 3 Characteristics of power swing blocking element

OC guard scheme for distance protection

Each distance measuring element can be supervised by an independent overcurrent element.

Out-of-step Trip Protection

The out-of-step tripping function is used to execute power system separation at the optimum point when an out-of-step condition occurs.

An out-of-step condition is detected by using two impedance measuring elements with quadrilateral characteristics as shown in Figure 4. The element operates when the out-of-step locus passes from Zone $A \rightarrow Z$ one $B \rightarrow Z$ one C (or Zone $C \rightarrow Z$ one $B \rightarrow Z$ one A) and remains in Zones A and C for the detection time (TOST).

Figure 4 Characteristics of out-of-step trip element

Non-directional and Directional Overcurrent and Earth Fault Protection

GRZ200 provides non-directional and directional overcurrent protections with inverse time and definite time for both phase faults and earth faults.

Inverse time overcurrent protection consists of an IDMT (inverse definite minimum time) element. IDMT is available in conformity with the IEC 60255-151 standard which encompasses both the IEC and IEEE/ANSI standard characteristics. Alternatively, a user-configurable curve may be created.

The IDMT element has a programmable reset feature, selectable for instantaneous, definite time or dependent time operation. This feature can be used to protect against flashing/intermittent fault conditions, or to grade correctly with electromechanical overcurrent relays.

Definite time overcurrent protection is enabled by the instantaneous overcurrent element and pickup-delay timer.

Tripping by each element can be disabled by the scheme switches, and overcurrent backup protection can be blocked by a binary input signal.

GRZ200 can also provide non-directional and directional earth fault protection. Protection functionality is the same as for the phase fault elements.

The directional earth fault elements have a user selectable minimum voltage threshold.

GRZ200 can provide directional earth fault command protection by using two stage directional earth fault elements, one of which is for tripping and the other is for blocking or for current reversal detection.

Non-Directional and Directional Sensitive Earth Fault Protection

GRZ200 provides non-directional and directional earth fault protection with more sensitive settings for use in applications where the fault current magnitude may be very low.

The sensitive earth fault element includes a digital filter which rejects all harmonics other than the fundamental power system frequency.

The sensitive earth fault quantity is measured directly, using a dedicated core balance earth fault CT.

Non-directional and Directional Negative Phase Sequence Overcurrent Protection

Negative phase sequence overcurrent (OCN) protection can be used in applications where certain fault conditions may not be detected by the normal phase and earth overcurrent protections, for example, in the case of a relay applied on the delta side of a delta-star transformer, to detect an earth fault on the star side. Alternatively, OCN can be used to protect a three phase motor against the severe overheating which results from operating with an unbalanced supply.

The negative phase sequence overcurrent elements can be directionalized by polarizing against the negative phase sequence voltage.

Phase Undercurrent Protection

Protection against loss of load is provided by the phase undercurrent protection. Two independent stages are provided, each with a programmable definite time delay.

Breaker Failure Protection

When an overcurrent element remains in operation longer than a pre-determined length of time following the output of a trip signal the associated circuit breaker is judged to have failed and adjacent circuit breakers can be tripped as a back-up measure.

Two independent timers are available, one of which can be used to control the RETRIP of the original circuit breaker(s). The second timer is used to control the back-tripping of adjacent circuit breakers.

For high-speed protection, an overcurrent element with high-speed reset time is used to prevent a spurious retrip or back-trip following a successful trip or re-trip action.

Broken Conductor Detection

The unbalance condition caused by an open circuited conductor is detected by the broken conductor detection function. An unbalance threshold with programmable definite time delay is provided.

Thermal Overload Protection

The thermal overload feature provides protection for cables and other plant against the effects of prolonged operation under excess load conditions. A thermal replica algorithm is applied to create a model for the thermal characteristics of the protected plant. The characteristics are exponential functions according to functional standard IEC 60255-149 and take into account the *PR* losses due to the specific operational current and the simultaneous cooling effect of the coolant. In this way the tripping time during an overload condition takes the prior level of load current into consideration. An alarm can be set to operate before the tripping condition is reached.

Thermal image:

t =
$$\tau ln \frac{|^2 - |_p^2}{|^2 - (k |_B)^2}$$

where

- t: Operating time
- T: Thermal time constant
- I: Overload current
- IB: Thermal overload current setting
- K: Constant
- $I_{p^{:}} \qquad Specified \ \ load \ \ current \ \ before \ \ the \\ overload \ occurs$

Overvoltage Protection

GRZ200 provides two independent overvoltage protections for phase-to-neutral voltage input. GRZ200 also provides two independent overvoltage protections for phase-to-phase voltage input. All stages can be set for inverse time or definite time operation. In total, therefore, GRZ200 provides four independent overvoltage thresholds.

Figure 7 Inverse time characteristics

Zero Phase Sequence Overvoltage (Neutral Voltage Displacement) Protection

Neutral voltage displacement (NVD) protection is provided for detection of earth faults in high impedance earthed or isolated systems. NVD can be programmed with definite time delays, and one stage is also available with an inverse delay. The zero sequence voltage may be derived from the phase voltages, or directly measured. Suppression of superimposed 3rd harmonic components of the supply voltage is included.

Negative Phase Sequence Overvoltage Protection

For detection of unbalanced supply voltages, Negative Sequence OVN overvoltage thresholds are available, both of which can be programmed with definite time delays, and one is also available with an inverse delay.

Positive Phase Sequence Overvoltage Protection

To detect an overvoltage condition on a steady state, positive phase sequence overvoltage is provided. The overvoltage condition is observed for a light-loaded long transmission lines of which capacitance is large, and it is also recognized as so-called Ferranti-effect. Series reactors are normally installed for reducing the effect of capacitance, however, when the series reactor is not functioning, the network must be tripped for preventing further damages.

Undervoltage Protection

GRZ200 provides two-stage undervoltage protection

for phase-to-phase voltage input and two-stage undervoltage protection for phase-to-neutral voltage input. The undervoltage protection is provided with an undervoltage blocking function to prevent undervoltage tripping in the case of a dead line.

Positive Phase Sequence Undervoltage Protection

GRZ200 provides positive phase sequence undervoltage protection element to detect steady-state and transient-state undervoltage conditions.

Under/Overfrequency Protection

GRZ200 provides over/under frequency protection and frequency rate-of-change protection.

These protections provide independent frequency protection stages. The over/under frequency protection is programmable for either under- or overfrequency operation, and each has an associated DTL timer. The frequency rate-of-change protection calculates the gradient of frequency change (df/dt).

Inrush Current Detector

The inrush current detector is used to prevent an incorrect operation of overcurrent protections from a magnetising inrush current during transformer energisation. Inrush current detector (ICD) detects second harmonic inrush current during transformer energisation.

Cold Load Protection

The cold load function modifies the overcurrent protection settings for a period after energising the system. This feature is used to prevent unwanted protection operation when closing on to the type of load which takes a high level of current for a period after energisation.

<u>CONTROL</u>

Autoreclose

Most faults on HV and EHV overhead transmission lines are transient faults, which are removed following line de-energization. After a short time, the hot gases disperse and the air de-ionizes. After clearing the fault and deionizing the fault arc, reclosing can be performed. GRZ200 provides two autoreclose schemes, single-shot autoreclose and multi-shot autoreclose. GRZ200 autoreclose function can be initiated by any of the following high-speed protections.

- Protection using telecommunication
- Distance zone is set to zone 1 extension

■ Single-shot autoreclose

Single-shot reclosing can provide any of three autoreclose modes; single-phase autoreclose, three-phase autoreclose, and single- and three-phase autoreclose.

In the single-phase autoreclose mode, only the faulted phase is tripped, and then reclosed if a single-phase earth fault occurs.

In the three-phase autoreclose mode, all three phases are tripped, and then reclosed regardless of the fault mode, whether a single-phase fault or a multi-phase fault has occurred.

In the single- and three-phase autoreclose mode, the single-phase is reclosed if a single-phase is tripped and the three phases are reclosed if three phases are tripped.

Multi-shot autoreclose

In multi-shot autoreclose, two- to four-shot reclosing can be selected. The first shot is selected from any of the four autoreclose modes available in the single-shot autoreclose scheme.

If reclosing by the first shot fails, three-phase tripping and reclosing is applied for the second to fourth shots.

Synchronism Check

For the correct operation of three-phase autoreclose, voltage and synchronism check are necessary. Characteristics of the synchronism check element are shown in Figure 8.

A detected slip cycle is determined by the following equation: $_{\Theta}$

 $f = \frac{180^{\circ} \text{XTSYN}}{180^{\circ} \text{XTSYN}}$

where,

f: slip cycle

θ: synchronism check angle setting TSYN: synchronism check timer setting

Figure 8 Synchronism check element

One-and-a-half Breaker Scheme

GRZ200 performs two-breaker autoreclose in a oneand- a-half breaker scheme.

Only single-shot autoreclose is available in a one-anda-half breaker scheme. Single-phase autoreclose, three-phase autoreclose or single and three-phase autoreclose can be applied to the two circuit breakers.

Switchgear Control

GRZ200 provides functions for local control of switchgear from the HMI. Two-stepped operation (select-control) is applied for the control of circuit breakers, isolator switches and earthing switches.

Also, switchgear control commands from the station level can be performed through GRZ200 within the application of a substation automation control system.

Interlock check

The interlocking function blocks the operation of primary switching devices, for instance when an isolator switch is under load, in order to prevent equipment damage and/or accidental human injury.

Each switchgear control function has interlocking modules included for different switchyard arrangements, where each function handles interlocking for one bay. The interlocking function is distributed to each IED and is not dependent on any central function.

HMI FUNCTION

Front Panel

GRZ200 provides the following front panel options.

- Standard LCD
- Large LCD (optional separate LCD type is also available)

The standard LCD panel incorporates the user interfaces listed below. Setting the relay and viewing stored data are possible using the Liquid Crystal Display (LCD) and operation keys.

- 21 character, 8 line LCD with back light
- Support of English language

Figure 9 - HMI Panel (large LCD type)

The large LCD panel incorporates a touch type screen for control and navigation purposes.

- 40 character, 40 line LCD with back light

The local human machine interface includes an LCD which can display the single line diagram for the bay.

The local human machine interface is simple and easy to understand with the following facilities and indications.

- Status indication LEDs (IN SERVICE, ERROR and 24 configurable LEDs)
- 7 Function keys for control, monitoring, setting group change and screen jump functions of which operation is configurable by the user
- Test terminals which can monitor three different signals from the front panel without connection to the rear terminals.
- USB port

Local PC connection

The user can communicate with GRZ200 from a local PC via the USB port on the front panel. Using GR-200 series engineering tool software (called GR-TIEMS), the user can view, change settings and monitor real-time measurements.

MONITORING

Metering

The following power system data is measured continuously and can be displayed on the LCD on the relay fascia, and on a local or remotely connected PC.

- Measured analog voltages, currents, frequency, active- and reactive-power

The accuracy of analog measurement is $\pm 0.5\%$ for I, V, P, Q at rated input and ± 0.03 Hz for frequency measurement.

Status Monitoring

The open or closed status of each switchgear device and failure information concerning power apparatus and control equipment are monitored by GRZ200.

Both normally open and normally closed contacts are used to monitor the switchgear status. If an unusual status is detected, a switchgear abnormality alarm is generated.

RECORDING

Event Record

Continuous event-logging is useful for monitoring of the system from an overview perspective and is a complement to specific disturbance recorder functions. Up to 1,024 time-tagged events are stored with 1ms resolution.

Fault records

Information about the pre-fault and fault values for currents and voltages are recorded and displayed for trip event confirmation. The most recent 8 time-tagged faults with 1ms resolution are stored. Fault record items are as follows.

- Date and time
- Faulted phase
- Tripping phase
- Operating mode
- Pre-fault and post-fault current and voltage data (phase, phase to phase, symmetrical components)
- Autoreclose operation
- Fault location Fault location is initiated by relay tripping signals.

COMMUNICATION

Station bus

Ethernet port(s) for the substation communication standards IEC 61850 is provided for the station bus. GRZ200 also support Ethernet redundancy scheme protocols defined in the IEC 62439-3 standard: PRP.

GENERAL FUNCTION

Self supervision

Automatic self-supervision of internal circuits and software is provided. In the event of a failure being detected, the ALARM LED on the front panel is illuminated, the 'UNIT FAILURE' binary output operates, and the date and time of the failure is recorded in the event record.

■ Time synchronization

Current time can be provided with time synchronization via the station bus by SNTP (Simple Network Time Protocol) with the IEC 61850 protocol. IRIG-B port is also available as an option.

Setting groups

8 settings groups are provided, allowing the user to set

It can also be started on receipt of a start signal from external relays.

Fault location is indicated in km or mile and % for the whole length of the protected line. The fault location is highly accurate for parallel lines due to the implementation of zero-sequence mutual impedance compensation.

The result of the fault location is stored as fault record data.

Disturbance records

The Disturbance Recorder function supplies fast, complete and reliable information for disturbances in the power system. It facilitates understanding of system behavior and performance of related primary and secondary equipment during and after a disturbance.

The Disturbance Recorder acquires sampled data from all selected analogue inputs and binary signals. The data is stored in COMTRADE format.

Serial communication

Serial ports (RS485 and fiber optic) for communicating with legacy equipment or protection relays over IEC 60870-5-103 protocol are provided. The GRZ200 can function as a protocol converter to connect SAS.

one group for normal conditions, while the other groups may be set to cover alternative operating conditions.

Password protection

Password protection is available for the execution of setting changes, executing control, clearing records and switching between local/remote control.

Simulation and test

GRZ200 provides simulation and test functions to check control functions without modification to wiring provided by a dummy circuit breaker (virtual equipment), and the capability to test communication signals by forced signal status change.

The simulation and test can work in the Test mode only.

TOOLS & ACCESSORY

The PC interface GR-TIEMS allows users to access GRZ200 and other Toshiba GR-200 series IEDs from a local personal computer (PC) to view on-line or stored data, to change settings, to edit the LCD screen, to configure sequential logics and for other purposes.

■ REMOTE SETTING AND MONITORING

The engineering tool supports functions to change settings and to view and analyze fault and disturbance records stored in GRZ200. Waveform data in the disturbance records can be displayed, edited, measured and analyzed in detail. An advanced version of the engineering tool can provide additional and powerful analysis tools and setting calculation support functions.

	ct - Q2Teel				60
EH EH 3	Ver Los Contension Lieb				
) 😅 🖬	Q				
My Prois	ot y				
			Current value	New visitue	1 Unit
	ISHEA SS	Groups/Attributes	Current value	New value	Une
10	127A.V	E Setting			
1.16	CHL-1	E ED Carlig			
	+ 台 BCPUT + 台 PROTT	B SanpleGroup			
1	B OHL-2	H 400			
	A BOPIN	H Stwitter			
	BCPU1	IR Binary Signal for Dietu			
84	68kV	B PLC			
	FEEDER-1	16 Anterlock			
	BCPUT	E MDMC			
	IL SC PROTI	E Converter			
9	FEEDER-2				
	A PROTI				
1	PROTI				
	- CO DETO-1				
		6	11.		
edy.					CAP NUM YOR
Test ID 0	4 233 187 99 2012/03/11 59	03 11 56 003			GAP NAM TON
Test IED (54	63 11 56 603			
Test ED 6 Se yes p	54	63 11 56 803			
Test ED 6 Se yes p	» 8	03 11 56 003 From 201 (0211)			ala
Test IED (ja yar) 6 ga IV 1 an 1 an	9 0 0	From 201202011			ala
Test ICD (Se yes) S S Ty	9 0 0				ala
Test IED (le gian) Col gan)	9 0 0	From 201202011			ala
Test IED () yer t) yer t) yer t) yer () yer) ye	9 0 0	From 201202011		the	1 8 10
Test RD 0 19 Jan 12 20 Jan 20 Jan	Dida & Time Dida & Time Dida & Time	Trees 2012/2111 Te 2012/0211 EventTed event 20		they ce	1 8 10
Test ED 0 ye ger t 6 P P 101 PAam Paa	Per Pa Deta & Terre Deta & Terre Deta de Carlos a Del Deta de Carlos de Carlos de Carlos Deta de Carlos de Car	From 201202111 To 20120211 EventTod event20 event25		ON	1 8 10
Test RD 0 Is yes 1 All yes 1 All yes 1 All yes All yes Control Contr	Data & Time Colda & Time Consecut 106 21 21 21 20 2006/041 00 21 21 21 21	Treen 2012/02/11 Te 2012/02/11 EventTed werd 30 werd 35		CN CF1 CN	1 8 10
Test IED (ye yer t f yer t	Per Pa Deta & Terre Deta & Terre Deta de Carlos a Del Deta de Carlos de Carlos de Carlos Deta de Carlos de Car	From 201202111 To 20120211 EventTod event20 event25		ON OF 1 ON OF 7	1 8 10
Test IED 0 9 34+ 1 9 34+ 1 9 34+ 1 9 34+ 1 9 34+ 1 9 54+ 1 1 54+ 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	94 10 10 Julie & Trave 2019 8041 10 Julie 10 Julie 2019 8041 10 Julie 10 Julie 10 Julie 2019 8041 10 Julie 10 Julie 10 Julie 10 Julie 2019 8041 10 Julie 10 Juli	Tree 201 (02)(1) Ta 201 (02)(1) Event Tred event 30 event 30 event 30 event 30 event 30		CH CH CH CH CH CH	1 8 10
Test IEU C 2 yer 1 4 Fr Alam Costor Costor T 1 T 1 T 1 T	59 20 2049 & Trime 201994041 00 21 21 21 21 201994041 00 21 21 21 21 200994041 00 21 21 21 21 200994041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 20094041 00 21 20094041 00 21 20094041 00 21 20094041 00 21 20094041 00 20094041 20094041 20094041 20094041 2009404 200940 200940 200940 200940 200940 200940 200940 200940 200940 200940 20094 200940 200940 20094 20094 20094 20094 20094 20094 20094 20094 20094 20094 20094 2009 2009	Tree 2010/011 Te 2010/011 EventTed event 20 event 22 event 22 event 25		(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	1 8 10
Text ED 0 10 year 12 10 m 10 m 1	99 10 10 Atte & Trave Domestics 100, 20 M & 200 Domestics 20 M & 200 D	Tree 201202111 Tra 20120211 Event Trad event 30 event 30 event 30 event 31 event 31		CH CH CH CH CH CH CH	1 8 10
Test IED (yes yes) Allow Allow Allow Control Con	59 20 2049 & Trime 201994041 00 21 21 21 21 201994041 00 21 21 21 21 200994041 00 21 21 21 21 200994041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 21 21 21 20094041 00 21 20094041 00 21 20094041 00 21 20094041 00 21 20094041 00 21 20094041 00 20094041 20094041 20094041 20094041 2009404 200940 200940 200940 200940 200940 200940 200940 200940 200940 200940 20094 200940 200940 20094 20094 20094 20094 20094 20094 20094 20094 20094 20094 20094 2009 2009	Tree 2010/011 Te 2010/011 EventTed event 20 event 22 event 22 event 25		01 01 01 01 01 01 01 01 01 01 01	1 8 10
Test ILD 0 Sea yes to Marine Marine Marine Control	Outo & Time Outo Outo & Time Outo Ou	Trees 2012/02/11 Trees 2012/02/11 E-well Tree evert 30 evert 32 evert 32 evert 32		on ori ori ori ori ori ori ori	1 8 10
Test ILD 0	99 12 Cade 3 Time District (0.02210) 20070021 (0.02010) 20070021 (0.02010) 20070	Dreen 201002111 The 20100211 event 20 event 20 e		04 01 07 07 07 07 08 07 08 08 08 08	1 8 10
Test IED 6 34 Jer 1 5 Jer 1 7 Alarni 7 Denti 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	99 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Then 2010/2011 The 2010/2011 EventTret event201 even		01 01 01 01 01 01 01 01 01 01 01 01 01 0	1 8 10
Test ILD 0 34 year 1 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	99 29 20 20 2 1 Three 20 20 2 1 Three 20 20 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	The 20102011 The 20102010 EventTed event201		01 01 01 01 01 01 01 01 01 01 01 01 01 0	1 8 10
Test IEB 6 9 944 E 6 944 E 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	99 20 2040 5.1 They 2040 5.1 They 2040 5.1 They 2040 5.0 The 32 2040	JTm 20100211 The 20100211 event to event to even		004 004 007 007 007 004 004 004 004 004	1 8 10
Test IED (2 244 C 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	99 20 20 20 20 20 20 20 20 20 20	Team 20100211 Team 20100211 FeedTrat ever 20 ever 20		100 140 041 047 047 047 047 047 047 047 047 047 047	1 8 10
Test IEB 6 9 944 E 6 944 E 7 944 E 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	99 20 2040 5.1 They 2040 5.1 They 2040 5.1 They 2040 5.0 The 32 2040	JTm 20100211 The 20100211 event to event to even		004 004 007 007 007 004 004 004 004 004	1 819
Test ILU (94 344 1 7 Alam) 2 Denti 2 Control 1 T 2 Denti 2 Control 1 T 2 T 1 T 1 T 2 T 1 T 1 T 2 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1	99 20 20 20 20 20 20 20 20 20 20 20 20 20	The 2014 and 211 The 2014 and 211 Const Trad work 21 work 22 work 22 work 23 work 23 work 23 work 23 work 23 work 23 work 23 work 24 work 24 work 25 work 25		100 140 041 047 047 047 047 047 047 047 047 047 047	1 819
Test ICO (2 Jan 1 2 Jan 1 2 Alam) 2 Alam)	99 Colorada Times 2016/01/21 (2017) (2017) (2017) 2016/01/21 (2017) (2017) (2017) (2017) 2016/01/21 (2017) (The Statutes Executive Statutes S		004 044 047 047 047 047 044 047 047 047	1 819

■ LCD CONFIGURATION

The user can configure and customize the MIMIC data displayed on the LCD of GRZ200 using GR-TIEMS software.

■ PROGRAMMABLE LOGIC EDITOR

The programmable logic capability allows the user to configure flexible logic for customized application and operation. Configurable binary inputs, binary outputs and LEDs are also programmed by the programmable logic editor. This complies with IEC61131-3 standard.

Figure 12 PC display of PLC editor

TECHNICAL DATA

HARDWARE	
Analog Inputs	
Rated current In	1A or 5A (selectable)
Rated voltage Vn	100V to 120V
Rated Frequency	50Hz or 60Hz (specified when order)
Overload Rating	
Current inputs	4 times rated current continuous
	5 times rated current for 3 mins
	6 times rated current for 2 mins
	30 times rated current for 10 sec
	100 times rated current for 1 second
	250 times rated current for one power cycle (20 or 16.6ms)
Voltage inputs	2 times rated voltage continuous
	2.5 times rated voltage for 1 second
Burden	
Phase current inputs	\leq 0.1VA at In = 1A, \leq 0.2VA at In = 5A
Earth current inputs	\leq 0.3VA at In = 1A, \leq 0.4VA at In = 5A
Sensitive earth fault inputs	\leq 0.3VA at In = 1A, \leq 0.4VA at In = 5A
Voltage inputs	\leq 0.1VA at Vn
Power Supply	
Rated auxiliary voltage	24/48/60Vdc (Operative range: 19.2 – 72Vdc),
	110/250Vdc or 100/220Vac (Operative range: 88 – 300Vdc
	or 80 – 230Vac) <notes></notes>
	 Binary inputs are intended for use with DC power source
	only.
	2) The power supply supervision function is intended for use
	with DC power source only. It should be disabled when AC
	power supply is applied in order to prevent spurious alarms.
Superimposed AC ripple on DC supply	≤ 15%
Power supply interruption	24/48/60Vdc rating: 20ms
withstand period	110/125Vdc rating: 50ms
(IEC 60255-11)	
Power consumption	≤ 15W (quiescent)
	≤ 25W (maximum)
Binary Inputs	
Input circuit DC voltage	24/48/60Vdc (Operating range: 19.2 – 72Vdc),
	110/125/220/250Vdc (Operating range: 88 – 300Vdc)
	Note: Pick-up setting is available in BI2 (Setting
Conceitive discharge in musit	range: 18V to 222V)
Capacitive discharge immunity	10µF charged to maximum supply voltage and discharged into the input terminals, according to ENA TS 48-4 with an external
	resistor
Maximum permitted voltage	72Vdc for 24/48/60Vdc rating,
	300Vdc for 110/250Vdc rating

Binary Outputs	
Fast operating contacts	
Make and carry	5A continuously
	30A, 290Vdc for 0.2s (L/R=5ms)
Break	0.15A, 290Vdc (L/R=40ms)
Operating time	Typically 3 ms
Semi-fast operating contacts	
Make and carry	8A continuously
	30A, 240Vdc for 1s (L/R=5ms)
Break	0.1A, 250Vdc (L/R=40ms)
	0.2A, 125Vdc (L/R=40ms)
Operating time	Typically 6 ms
Auxiliary contacts	
Make and carry	8A continuously
	30A, 240Vdc for 1s (L/R=5ms)
Break	0.1A, 250Vdc (L/R=40ms)
	0.2A, 125Vdc (L/R=40ms)
Operating time	Typically 8 ms
Hybrid contacts (10 A breaking)	
Make and carry	8A continuously
	10A, 220Vdc for 0.5s (L/R=5ms)
Break	10A, 220Vdc (L/R=20ms)
	10A, 110Vdc (L/R=40ms)
Operating time	1 ms
Durability	≥ 10,000 operations (loaded contact)
	≥ 100,000 operations (unloaded contact)
Measuring input capability	
Full scale	
Standard current input	\geq 60A (1A rating) or 300A (5A rating)
Sensitive current input	\geq 3A (1A rating) or 15 A (5A rating)
Voltage input	≥ 200V
Sampling rate	48 samples / cycle
Frequency response	< 5% deviation over range 16.7Hz to 600Hz
Mechanical Design	
Installation	Flush mounting
Weight	Approx. 12kg (1/2 size), 15kg (3/4 size), 25kg (1/1 size)
Case color	2.5Y7.5/1 (approximation to Munsell value)
LED	
Number	26 (Fixed for "In service" and "ERROR")
Color	Red / Yellow / Green (configurable) except "In service" (green)
Color	and "Error" (red)
Function keys	
Number	7
Local Interface	
USB	Туре В
Maximum cable length	2m (max.)
Terminal Block	
CT/VT input	M3.5 Ring terminal (ring lug type terminal only)
Binary input, Binary output	Compression plug type terminal

System Interface (rear port)	
100BASE-TX/1000BASE-T	For IEC 61850-8-1 and GR-TIEMS
Cable type	CAT5e STP cable
	- enhanced category 5 with Shielded Twisted Pair cable
Connector type	RJ-45
100BASE-FX	For IEC 61850-8-1
Cable type	Multimode fibre, 50/125 μ m or 62.5/125 μ m
Connector type	SC duplex
Wave length	1300nm
1000BASE-LX	For IEC 61850-8-1
Cable type	Single-mode fibre
Connector type	LC duplex
Wave length	1310nm
RS485	For IEC 60870-5-103
Cable type	Shielded twisted pair cable
Connector type	Push-in spring terminal (PCB connector)
Fiber optical (for serial communication)	For IEC 60870-5-103
Cable type	Multimode fibre, 50/120 μ m or 62.5/125 μ m
Connector type	ST
Wave length	820nm
IRIG-B (for time synchronization)	
Cable type	Shielded twisted pair cable
Connector type	Push-in spring terminal (PCB connector)

ENVIRONMENTAL PERFORMANCE

Atmospheric Environr	nent	
Temperature	IEC 60068-2-1/2 IEC 60068-2-14	Operating range: -10°C to +55°C. Storage / Transit: -25°C to +70°C. Cyclic temperature test as per IEC 60068-2- 14
Humidity	IEC 60068-2-30 IEC 60068-2-78	56 days at 40°C and 93% relative humidity. Cyclic temperature with humidity test as per IEC 60068-2-30
Enclosure Protection	IEC 60529	IP52 - Dust and Dripping Water Proof IP20 for rear panel
Mechanical Environme	ent	
Vibration	IEC 60255-21-1	Response - Class 1 Endurance - Class 1
Shock and Bump	IEC 60255-21-2	Shock Response Class 1 Shock Withstand Class 1 Bump Class 1
Seismic	IEC 60255-21-3	Class 1
Electrical Environmen	t	
Dielectric Withstand	IEC 60255-27	 2kVrms for 1 minute between all terminals and earth. 2kVrms for 1 minute between independent circuits. 1kVrms for 1 minute across normally open contacts.
High Voltage Impulse	IEC 60255-27 IEEE C37.90	Three positive and three negative impulses of 5kV(peak), 1.2/50µs, 0.5J between all terminals and between all terminals and earth.
Voltage Dips, Interruptions, Variations and Ripple on DC supply	IEC 60255-11, IEC 61000-4-29, IEC 61000-4-17 IEC 60255-26 Ed 3	 Voltage dips: 0 % residual voltage for 20 ms 40 % residual voltage for 200 ms 70 % residual voltage for 500 ms Voltage interruptions: 0 % residual voltage for 5 s Ripple: 15 % of rated d.c. value, 100 / 120 Hz Gradual shut-down / start-up: 60 s shut-down ramp, 5 min power off, 60s start-up ramp Reversal of d.c. power supply polarity: 1 min
Capacitive Discharge	ENA TS 48-4	10µF charged to maximum supply voltage and discharged into the input terminals with an external resistance

Electromagnetic Enviro	onment	
High Frequency	IEC 60255-22-1 Class 3,	1 MHz burst in common / differential modes
Disturbance /	IEC 61000-4-18	Auxiliary supply and I/O ports: 2.5 kV / 1 kV
Damped Oscillatory	IEC 60255-26 Ed 3	Communications ports: 1 kV / 0 kV
Wave		
Electrostatic Discharge	IEC 60255-22-2 Class 4,	Contact: 2, 4, 6, 8kV
	IEC 61000-4-2	Air: 2, 4, 8, 15kV
	IEEE C37.90.3-2001	
	IEC 60255-26 Ed 3	
Radiated RF Electromagnetic	IEC 60255-22-3,	Sweep test ranges: 80 MHz to 1 GHz and 1.4 GHz to 2.7 GHz.
Disturbance	IEC 61000-4-3 Level 3	Spot tests at 80, 160, 380, 450, 900, 1850
	IEC 60255-26 Ed 3	and 2150 MHz.
		Field strength: 10 V/m
		Field strength 35V/m for frequency sweep of
	IEEE C37.90.2-1995	25MHz to 1GHz.
Fast Transient	IEC 60255-22-4	5 kHz, 5/50ns disturbance
Disturbance	IEC 61000-4-4	Auxiliary supply and input / output ports: 4 kV
	IEC 60255-26 Ed 3	Communications ports: 2 kV
Surge Immunity	IEC 60255-22-5	1.2/50µms surge in common/differential
	IEC 61000-4-5	modes:
	IEC 60255-26 Ed 3	Auxiliary supply and input / output ports: 4,
		2, 1, 0.5 kV / 1, 0.5 kV
		Communications ports: up to 1, 0.5 kV / 0 kV
Surge Withstand	IEEE C37.90.1-2002	3kV, 1MHz damped oscillatory wave
Ũ		4kV, 5/50ns fast transient
Conducted RF	IEC 60255-22-6	Sweep test range: 150 kHz to 80MHz
Electromagnetic	IEC 61000-4-6	Spot tests at 27 and 68 MHz.
Disturbance	IEC 60255-26 Ed 3	Voltage level: 10 V r.m.s
Power Frequency	IEC 60255-22-7	50/60 Hz disturbance for 10 s in common /
Disturbance	IEC 61000-4-16	differential modes
	IEC 60255-26 Ed 3	Binary input ports: 300 V / 150 V
Power Frequency	IEC 61000-4-8 Class 4	Field applied at 50/60Hz with strengths of:
Magnetic Field	IEC 60255-26 Ed 3	30A/m continuously,
0		300A/m for 1 second.
Conducted and	IEC 60255-25	Conducted emissions:
Radiated Emissions	EN 55022 Class A,	0.15 to 0.50MHz: <79dB (peak) or <66dB
	EN 61000-6-4	(mean)
	IEC 60255-26 Ed 3	0.50 to 30MHz: <73dB (peak) or <60dB
		(mean)
		Radiated emissions
		30 to 230 MHz: < 40 dB(uV/m)
		230 to 1000 MHz: < 47 dB(uV/m)
		Measured at a distance of 10 m

European Commission Directives		
/	2014/30/EU	Compliance with the European Commission
		Electromagnetic Compatibility Directive is
		demonstrated according to EN 60255-26:2013.
	2014/35/EU	Compliance with the European Commission Low
		Voltage Directive for electrical safety is
		demonstrated according EN 60255-27:2014.

Performance and Functional Standards		
Category	Standards	
General		
Common requirements	IEC 60255-1	
Data Exchange	IEC 60255-24 / IEEE C37.111 (COMTRADE)	
	IEEE C37.239 (COMFEDE)	
Product Safety	IEC 60255-27	

FUNCTIONAL DATA	
Phase Fault Distance Measuring Element	
Z*-Mho.Reach, Z*-X.Reach and Z*-R.Reach	
(Z1S, Z1XS, Z2S, Z3S, Z4S, Z5S, ZCSF, ZCSR)	0.10 to 500.00 Ω in 0.01 Ω steps (1A rating)
(,,,,,,,,	0.01 to 100.00 Ω in 0.01 Ω steps (5A rating)
Characteristic angle	30° to 90° in 1° steps
Z*-Mho.Angle and Z*-R.Angle (Z1S, Z1XS, Z2S,	
Z3S, Z4S, Z5S, ZCSF, ZCSR)	
Z*- DirX.Angle and Z*-DirR.Angle (Z1S, Z1XS, Z2S, Z3S, Z4S, Z5S, ZCSF, ZCSR)	0° to 60° in 1° steps
ZSF-X.GrAngle1 and ZSR-X.GrAngle1	0° to 45°in 1° steps
ZSF-X.GrAngle2 and ZSR-X.GrAngle2	45° to 90° in 1° steps
· ·	
Earth Fault Distance Measuring Element	
Z*-Mho.Reach, Z*-X.Reach and Z*-R.Reach (Z1G, Z1XG, Z2G, Z3G, Z4G, Z5G, ZCGF,	0.10 to 500.00 Ω in 0.01 Ω steps (1A rating)
ZCGR)	0.01 to 100.00 Ω in 0.01 Ω steps (5A rating)
Characteristic angle	30° to 90° in 1° steps
Z*-Mho.Angle and Z*-R.Angle (Z1G, Z1XG, Z2G,	
Z3G, Z4G, Z5G, ZCGF, ZCGR)	
Z*- DirX.Angle and Z*-DirR.Angle (Z1G, Z1XG,	0° to 60° in 1° steps
Z2G, Z3G, Z4G, Z5G, ZCGF, ZCGR) ZGF-X.GrAngle1 and ZGR-X.GrAngle1	0° to 45°in 1° steps
ZGF-X.GrAngle2 and ZGR-X.GrAngle2	45° to 90° in 1° steps
Timer Setting	
	0.00 to 100.00s in 0.01steps
Time setting of Z1S, Z1XS, Z2S, Z3S, Z4S, Z5S, Z1G, Z1XG, Z2G, Z3G, Z4G, Z5G	
Overcurrent Element for Fail-safe	
Overcurrent elements Z^*_OCFS for supervision	0.02 to 5.00A in 0.01A steps (1A rating)
distance measuring elements (Z1S, Z1XS, Z2S,	
	0.10 to 25.00A in 0.01A steps (5A rating)
Z3S, Z4S, Z5S, Z1G, Z1XG, Z2G, Z3G, Z4G, 75G)	0.10 to 25.00A in 0.01A steps (5A rating)
Z5G)	0.10 to 25.00A in 0.01A steps (5A rating)
Z5G) Command Protection Distance Scheme	
Z5G) Command Protection Distance Scheme Time for current reverse block	0.00 to 10.00s in 0.01s steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer	0.00 to 10.00s in 0.01s steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 2.50 to 75.00Ω in 0.01Ω steps (1A rating)
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block Detection zone (PSBGS) Detection timer (TPSBS)	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block Detection zone (PSBGS) Detection timer (TPSBS) Load Encroachment	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0 to 50ms in 1ms steps 0 to 50ms in 0.01s steps 0.00 to 1.00s in 0.01s steps 2.50 to 75.00Ω in 0.01Ω steps (1A rating) 0.50 to 15.00Ω in 0.01Ω steps (5A rating)
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block Detection zone (PSBGS) Detection timer (TPSBS)	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0.00 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 2.50 to 75.00 Ω in 0.01Ω steps (1A rating) 0.50 to 15.00 Ω in 0.01Ω steps (5A rating) 0.10 to 500.00 Ω in 0.01Ω steps (1A rating)
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block Detection zone (PSBGS) Detection timer (TPSBS) Load Encroachment Minimum load resistance (LESR, LESL)	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0 to 50ms in 1ms steps 0 to 50ms in 0.01s steps 0.00 to 1.00s in 0.01s steps 2.50 to 75.00Ω in 0.01Ω steps (1A rating) 0.50 to 15.00Ω in 0.01Ω steps (5A rating)
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block Detection zone (PSBGS) Detection timer (TPSBS) Load Encroachment	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0.00 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 2.50 to 75.00 Ω in 0.01Ω steps (1A rating) 0.50 to 15.00 Ω in 0.01Ω steps (5A rating) 0.10 to 500.00 Ω in 0.01Ω steps (1A rating)
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block Detection zone (PSBGS) Detection timer (TPSBS) Load Encroachment Minimum load resistance (LESR, LESL)	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0.00 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 to 1.00s in 0.01s steps 0.00 to 1.00s in 0.01s steps 2.50 to 75.00Ω in 0.01Ω steps (1A rating) 0.50 to 15.00Ω in 0.01Ω steps (5A rating) 0.10 to 500.00Ω in 0.01Ω steps (1A rating) 0.01 to 100.00Ω in 0.01Ω steps (5A rating)
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block Detection zone (PSBGS) Detection timer (TPSBS) Load Encroachment Minimum load resistance (LESR, LESL) Maximum load angle (LESR-Angle, LESL-Angle)	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 - 0.30s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0.00 to 50ms in 1ms steps 0.00 to 50ms in 0.01s steps 2.50 to 75.00 Ω in 0.01Ω steps (1A rating) 0.50 to 15.00 Ω in 0.01Ω steps (5A rating) 0.10 to 500.00 Ω in 0.01Ω steps (1A rating) 0.01 to 100.00 Ω in 0.01Ω steps (5A rating)
Z5G) Command Protection Distance Scheme Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Command Protection Earth Fault Scheme Time for delay trip Time for current reverse block Coordination time for BOP scheme delayed drop-off timer Power Swing Block Detection zone (PSBGS) Detection timer (TPSBS) Load Encroachment Minimum load resistance (LESR, LESL) Maximum load angle (LESR-Angle, LESL-Angle)	0.00 to 10.00s in 0.01s steps 0 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0.00 to 10.00s in 0.01s steps 0.00 to 50ms in 1ms steps 0.00 to 1.00s in 0.01s steps 2.50 to 75.00 Ω in 0.01Ω steps (1A rating) 0.50 to 15.00 Ω in 0.01Ω steps (5A rating) 0.10 to 500.00 Ω in 0.01Ω steps (1A rating) 0.01 to 100.00 Ω in 0.01Ω steps (5A rating) 5° to 75° in 1° steps

Minimum Operating Current	
	0.08A fixed (1A relay) 0.4A fixed (5A relay)
	0.10 to 1.00A in 0.01A steps(1A rating)
	0.50 to 5.00A in 0.01A steps (5A rating)
Switch-on-to-fault Protection	
	0.02 to.5.00A in 0.01A steps (1A rating)
	0.10 to 15.00A in 0.01A steps (5A rating)
Stub Protection	
	0.02 to 5.00A in 0.01A steps (1A rating)
	0.10 to 15.00A in 0.01A steps (5A rating)
Out-of-step Protection	
	15.00 to 150.00 Ω in 0.01 Ω steps (1A rating)
	3.000 to 30.000 Ω in 0.01 Ω steps (5A rating)
	5.00 to 50.00 Ω in 0.01 Ω steps (1A rating)
	1.000 to 10.000 Ω in 0.01 Ω steps (5A rating)
	5.00 to 250.00 Ω in 0.01 Ω steps (1A rating)
	1.000 to 50.000 Ω in 0.001 Ω steps (5A rating)
,	1.0 to 50.00 Ω in 0.01 Ω steps (1A rating)
(0.200 to 10.000 Ω in 0.001 Ω steps(5A rating)
Detection time (0.01 to 1.00s in 0.01s steps
Breaker Failure (BF) Protection	
Overcurrent element 0	0.1 to 2.0A in 0.1A steps (1A rating)
(0.5 to 10.0A in 0.1A steps (5A rating)
BF timer for retry-trip of failed breaker 5	50 to 500ms in 1ms steps
BF timer for related breaker trip	50 to 500ms in 1ms steps
Non-directional and Directional Overcurrent Pro	otection
1 st , 2 nd , 3 rd , 4 th Definite time overcurrent threshold	0.02 to 50.00A in 0.01A steps (1A rating)
(0.10 to 250.00A in 0.01A steps (5A rating)
1 st , 2 nd , 3 rd , 4 th Inverse time overcurrent threshold	
	0.02 to 5.00A in 0.01A steps (1A rating)
0	0.10 to 25.00A in 0.01A steps (5A rating)
0	
Direction characteristic	0.10 to 25.00A in 0.01A steps (5A rating)
Direction characteristic N Polarising voltage 1	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward
Direction characteristicNPolarising voltage1Characteristic angle0	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed)
Direction characteristic N Polarising voltage 1 Characteristic angle 0 Delay type E	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original
Direction characteristic N Polarising voltage 1 Characteristic angle 0 Delay type E	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE-
Direction characteristic N Polarising voltage 1 Characteristic angle 0 Delay type 1 Drop-out/pick-up ratio 1	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original
Direction characteristic M Polarising voltage 1 Characteristic angle 0 Delay type 1 Drop-out/pick-up ratio 1 DTL delay 0	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps
Direction characteristic N Polarising voltage 2 Characteristic angle 2 Delay type 2 Drop-out/pick-up ratio 2 DTL delay 2 IDMTL Time Multiplier Setting TMS 2	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps
Direction characteristic M Polarising voltage 1 Characteristic angle 0 Delay type 1 Drop-out/pick-up ratio 1 DTL delay 10 IDMTL Time Multiplier Setting TMS 0 Reset type 1	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps
Direction characteristic M Polarising voltage 1 Characteristic angle 0 Delay type 1 Drop-out/pick-up ratio 1 DTL delay 0 IDMTL Time Multiplier Setting TMS 0 Reset type 1 Reset definite delay 0	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time
Direction characteristic M Polarising voltage 1 Characteristic angle 0 Delay type 1 Drop-out/pick-up ratio 1 DTL delay 0 IDMTL Time Multiplier Setting TMS 0 Reset type 1 Reset definite delay 0	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps
Direction characteristic M Polarising voltage M Characteristic angle M Delay type M Drop-out/pick-up ratio M DTL delay M IDMTL Time Multiplier Setting TMS M Reset type M Reset definite delay M Reset Time Multiplier Setting RTMS M Non-directional and Directional Earth Fault Protection M	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps
Direction characteristic M Polarising voltage M Characteristic angle M Delay type M Drop-out/pick-up ratio M DTL delay M IDMTL Time Multiplier Setting TMS M Reset type M Reset definite delay M Reset Time Multiplier Setting RTMS M Interctional and Directional Earth Fault Preset M 1st, 2nd, 3rd, 4th Definite time earth fault threshold M	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps ection
Direction characteristic M Polarising voltage M Characteristic angle M Delay type M Drop-out/pick-up ratio M DTL delay M IDMTL Time Multiplier Setting TMS M Reset type M Reset definite delay M Non-directional and Directional Earth Fault Protectional M 1 st , 2 nd , 3 rd , 4 th Definite time earth fault threshold M	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps ection 0.02 to 50.00A in 0.01A steps (1A rating)
Direction characteristic I Polarising voltage I Characteristic angle I Delay type I Drop-out/pick-up ratio I DTL delay I IDMTL Time Multiplier Setting TMS I Reset type I Reset definite delay I Reset Time Multiplier Setting RTMS I 1st, 2nd, 3rd, 4th Definite time earth fault threshold I 1st, 2nd, 3rd, 4th Inverse time earth fault threshold I	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps ection 0.02 to 50.00A in 0.01A steps (1A rating) 0.10 to 250.00A in 0.01A steps (5A rating)
Direction characteristic I Polarising voltage I Characteristic angle I Delay type I Drop-out/pick-up ratio I DTL delay I IDMTL Time Multiplier Setting TMS I Reset type I Reset definite delay I Reset Time Multiplier Setting RTMS I 1st, 2nd, 3rd, 4th Definite time earth fault threshold I 1st, 2nd, 3rd, 4th Inverse time earth fault threshold I	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps ection 0.02 to 50.00A in 0.01A steps (1A rating) 0.02 to 5.00A in 0.01A steps (1A rating)
Direction characteristic I Polarising voltage I Characteristic angle I Delay type I Drop-out/pick-up ratio I DTL delay I IDMTL Time Multiplier Setting TMS I Reset type I Reset definite delay I Non-directional and Directional Earth Fault Presetting TMS I 1st, 2nd, 3rd, 4th Definite time earth fault threshold I Dist, 2nd, 3rd, 4th Inverse time earth fault threshold I Direction characteristic I	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps ection 0.02 to 50.00A in 0.01A steps (1A rating) 0.02 to 50.00A in 0.01A steps (1A rating) 0.02 to 5.00A in 0.01A steps (1A rating) 0.02 to 5.00A in 0.01A steps (5A rating) 0.10 to 25.00A in 0.01A steps (5A rating)
Direction characteristicIPolarising voltageICharacteristic angleIDelay typeIDrop-out/pick-up ratioIDTL delayIIDMTL Time Multiplier Setting TMSIReset typeIReset definite delayIReset definite delayINon-directional and Directional Earth Fault PresholdI1st, 2nd, 3rd, 4th Inverse time earth fault thresholdIDirection characteristicIDirection characteristicICharacteristic angleI	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps ection 0.02 to 50.00A in 0.01A steps (1A rating) 0.10 to 250.00A in 0.01A steps (1A rating) 0.02 to 5.00A in 0.01A steps (5A rating) 0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward
Direction characteristicIPolarising voltageICharacteristic angleIDelay typeIDrop-out/pick-up ratioIDTL delayIIDMTL Time Multiplier Setting TMSIReset typeIReset definite delayIReset definite delayINon-directional and Directional Earth Fault ProtectionalI1st, 2nd, 3rd, 4th Definite time earth fault thresholdIDirection characteristicIDirection characteristicICharacteristic angleIPolarising voltage (3V0)I	0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 1.0V (fixed) 0 – 180 degs in 1 deg steps DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original 10 to 100% in 1% steps 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps Definite Time or Dependent Time 0.00 to 300.00s in 0.01s steps 0.010 to 50.000 in 0.001 steps ection 0.02 to 50.00A in 0.01A steps (1A rating) 0.10 to 250.00A in 0.01A steps (5A rating) 0.02 to 5.00A in 0.01A steps (5A rating) 0.10 to 25.00A in 0.01A steps (5A rating) Non Directional / Forward / Backward 0 to 180° in 1° steps (310 lags for -3V0)

Drop out/pick up rotio	10 to 100% in $1%$ stars	
Drop-out/pick-up ratio	10 to 100% in 1% steps	
DTL delay	0.00 to 300.00s in 0.01s steps	
IDMTL Time Multiplier Setting TMS	0.010 to 50.000 in 0.001 steps	
Reset type	Definite Time or Dependent Time	
Reset definite delay	0.00 to 300.00s in 0.01s steps	
Reset Time Multiplier Setting RTMS	0.010 to 50.000 in 0.001 steps	
Non-directional and Directional Negative Sequ		
1 st , 2 nd , 3 rd , 4 th Definite time NOC threshold	0.02 to 50.00A in 0.01A steps (1A rating)	
Ast and ard the standard have been	0.10 to 250.00A in 0.01A steps (5A rating)	
1 st , 2 nd , 3 rd , 4 th Inverse time NOC threshold	0.02 to 5.00A in 0.01A steps (1A rating)	
Direction characteristic	0.10 to 25.00A in 0.01A steps (5A rating)	
	Non Directional / Forward / Backward 0 to 180° in 1° steps (3I0 lags for $-3V0$)	
Characteristic angle		
Polarising voltage	0.5 to 25.0V in 0.1V steps	
Delay type	DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE- EI / US-CO2 / US-CO8 / Original	
Drop-out/pick-up ratio	10 to 100% in 1% steps	
DTL delay	0.00 to 300.00s in 0.01s steps	
IDMTL Time Multiplier Setting TMS	0.010 to 50.000 in 0.001 steps	
Reset type	Definite Time or Dependent Time	
Reset definite delay	0.00 to 300.00s in 0.01s steps	
Reset Time Multiplier Setting RTMS	0.010 to 50.000 in 0.001 steps	
Phase Undercurrent Protection		
Undercurrent 1st, 2nd threshold:	0.10 – 2.00A in 0.01A steps (1A rating)	
	0.5 – 10.0A in 0.1A steps (5A rating)	
DTL delay	0.00 to 300.00s in 0.01s steps	
Inrush Current Detection		
Second harmonic detection	10 to 50% in 1% steps	
Inrush current thresholds	0.10 to 5.00A in 0.01A steps (1A rating)	
	0.5 to 25.0A in 0.1A steps (5A rating)	
Thermal overload Protection		
Thermal setting (THM = k .IFLC)	0.40 – 2.00A in 0.01A steps (1A rating)	
Time constant (τ)	2.0 – 10.0A in 0.1A steps (5A rating) 0.5 – 500.0mins in 0.1min steps	
Thermal alarm	OFF, 50% to 100% in 1% steps	
	0.00 – 1.00A in 0.01A steps (1A rating)	
Pre-load current setting	0.0 – 5.0A in 0.1A steps (5A rating)	
Broken Conductor Detection		
Broken conductor threshold	0.10 to 1.00 in 0.01 steps	
DTL delay	0.00 to 300.00s in 0.01s steps	
Phase Overvoltage Protection		
1 st , 2 nd overvoltage threshold	1.0 to 220.0V in 0.1V steps	
Delay type	DTL, IDMT, Original	
Drop-out/pick-up ratio	10 to 100% in 1% steps	
DTL delay	0.00 to 300.00s in 0.01s steps	
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps	
Reset delay	0.0 to 300.0s in 0.1s steps	

Phase to Phase Overvoltage Protection	
1 st , 2 nd overvoltage threshold	1.0 to 220.0V in 0.1V steps
Delay type	DTL, IDMT, Original
Drop-out/pick-up ratio	10 to 100% in 1% steps
DTL delay	0.00 to 300.00s in 0.01s steps
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps
Reset delay	0.0 to 300.0s in 0.1s steps
Positive sequence phase overvoltage protect	
1st, 2nd POV thresholds:	1.0 – 220.0V in 0.1V steps
Drop-out/pick-up ratio	10 to 100% in 1% steps
DTL delay	0.00 to 300.00s in 0.01s steps
Negative sequence phase overvoltage protec	
1st, 2nd NOV thresholds:	1.0 – 220.0V in 0.1V steps
Delay type	DTL, IDMT, Original
Drop-out/pick-up ratio	10 to 100% in 1% steps
DTL delay	0.00 to 300.00s in 0.01s steps
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps
Reset delay	0.0 to 300.0s in 0.1s steps
Phase Undervoltage Protection	0.0 to 500.03 in 0.13 steps
1 st , 2 nd undervoltage threshold	5.0 to 130.0V in 0.1V steps
Delay type	DTL, IDMT, Original
Drop-out/pick-up ratio	100 to 120% in 1% steps
DTL delay	0.00 to 300.00s in 0.01s steps
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps
Reset delay	0.0 to 300.0s in 0.1s steps
Undervoltage block threshold	5.0 to 20.0V in 0.1V steps
Undervoltage block delay	0.00 to 300.00s in 0.01s steps
Phase to Phase Undervoltage Protection	
1 st , 2 nd undervoltage threshold	5.0 to 130.0V in 0.1V steps
Delay type	DTL, IDMT, Original
Drop-out/pick-up ratio	100 to 120% in 1% steps
DTL delay	0.00 to 300.00s in 0.01s steps
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps
Reset delay	0.0 to 300.0s in 0.1s steps
Undervoltage block threshold	5.0 to 20.0V in 0.1V steps
Undervoltage block delay	0.00 to 300.00s in 0.01s steps
Under/Over Frequency Protection	
1 st - 4 th under/overfrequency threshold	$(F_{nom} - 10.00Hz) - (F_{nom} + 10.00Hz)$ in 0.01Hz steps F_{nom} : nominal frequency
DTL delay:	0.00 – 300.00s in 0.01s steps
Frequency UV Block	40.0 – 100.0V in 0.1V steps
Autoreclose	
Number of shots	1 to 5 shots
Dead time for single-phase autoreclose	0.01 to 300.00s in 0.01s steps
Dead time for three-phase autoreclose	0.01 to 300.00s in 0.01s steps
Multi-shot dead line time	0.01 to 300.00s in 0.01s steps
Reclaim time	0.0 to 600.0s in 0.1s steps
Pulse width of reclosing signal output	0.01 to 10.00s in 0.01s steps
Autoreclose reset time	0.01 to 310.00s in 0.01s steps

Synchronism check	
Synchronism check angle	0° to 75° in 1° steps
UV element	10 to 150V in 1V steps
OV element	10 to 150V in 1V steps
Busbar or line dead check	0 to 150V in 1V steps
Busbar or line live check	0 to 150V in 1V steps
Synchronism check time	0.01 to 100.00s in 0.01s steps
Voltage check time	0.01 to 100.00s in 0.01s steps
Voltage Transformer Failure Supervision	
Undervoltage element (phase-to-phase)	50 to 100V in 1V steps
Undervoltage element (phase-to-earth)	10 to 60V in 1V steps
Current change detection element	0.1A fixed (1A rating)
	0.5A fixed (5A rating)
Residual voltage element	20V fixed
Residual current element	Common use with earth fault detection element
Fault Locator	
Line reactance and resistance setting	0.0 to 999.9 Ω in 0.1 Ω steps (1A rating)
	0.00 to 199.99 Ω in 0.01 Ω steps (5A rating)
Line length	0.0 to 399.9km in 0.1km steps
Correction factor of impedance between lines	80 to 120% in 1% steps
Correction factor of impedance between in each phase	80 to 120% in 1% steps
Accuracy	± 0.4 km (up to 20km, without fault at near end)
	$\pm 2\%$ (up to 399.9km, without fault at near end)
Minimum measuring cycles	2.5 cycles
Metering Function	
AC Current	Accuracy \pm 0.5% (at rating)
AC Voltage	Accuracy \pm 0.5% (at rating)
Energy (Wh, varh)	Accuracy \pm 1.0% (at rating)
Power (P, Q)	Accuracy \pm 1.0% (at rating when power quantities being fed)
Frequency	Accuracy \pm 0.03Hz
Time Synchronisation	
Protocol	SNTP

Accuracy	
Distance protection	
Distance measuring element	
Static accuracy	$\pm 5\%$ at SIR < 30, $\pm 10\%$ at 30 < SIR < 50
Static angle accuracy	±5° of setting value
Operating time	Typically 25ms + BO operating time (*1)
Overcurrent protection	
Pick-ups	±5% of setting value (at I ≥ 0.5pu)
Operating time with definite timer	Typically 35ms + BO operating time (*1)
Operating time with inverse timer	IEC curve : ±5% of theoretical value
	for 2 \leq Multiple of threshold value \leq 10 and TMS=1 IEEE curve: $\pm 10\%$ of theoretical value
	for 2 \leq multiple of threshold value \leq 10 and TMS=1
Earth Fault Protection Pick-ups Operating time with definite timer	±3% of setting value Typically 35ms + BO operating time (*1)
Operating time with inverse timer	IEC curve : ±5% of theoretical value
	for 2 \leq Multiple of threshold value \leq 10 and TMS=1
	IEEE curve: ±10% of theoretical value
	for 2 \leq multiple of threshold value \leq 10 and TMS=1
Over / under voltage protection	·
Pick-ups	±5% of setting value
Operating time	Typically 35ms
Breaker Failure (BF) Protection	
Operating time of overcurrent element	Typically 20ms
Resetting time of overcurrent element	Maximum ≤15ms
Thermal overload protection	
Pick-ups	±5% of setting value
Operating time	±10% of setting value
Negative overcurrent protection	
Pick-ups	±5% of setting value (at I ≥ 0.5pu)
Operating time	Typically 35ms
Broken conductor protection	
Pick-ups	±5% of setting value (at I ≥ 0.5pu)
Operating time	Typically 35ms
Autoreclose	
Operating time of synchronism check element	Typically 35ms
Operating time of UV and OV elements	Typically 35ms
Fail safe relay operating time	Typically 20ms

(*1)Typically 3~6ms

ORDERING INFORMATION

[Hardware selection]

「Hard	ware selection	on (1	L)1														Po	sitions	5								
								-	7	8	-	9	A	В	-	(C C) -	E	F	-	G	Н	-	J	К	L
Configu	rations	G	R	Z	Z 2	0	0	-			-				-	() () -			-	3		-			0
Applica	tion of power sys								ļ	ļ																	
	Function for sing	e brea	ker so	che	me (C	T x 5,	VT x	: 5)	1	-																	
DC rate	d voltage	00 220))/a.a	(5.0	o (*1)	١				4																	
	110-250 Vdc or 1 24-60 Vdc	00-220	Jvac	(Se	e (*1))				1 3																	
System	Frequency																										
eyete	50Hz														 				-						1		
	60Hz				~~~~~														1					h	2		
AC rate	d current														 								1		ł		
	1A													1					1	1			1			1	1
	5A]							2	
Serial a	nd/or Ethernet C							ync	Port((s)		ļ			ļ					ļ							
	Refer to Commu	nicatio	n port	t Ta	able (S	ee (*	3))							l	ļ												
	_									1																	
Outline		/2 1	0		611							, ,	-														
	Standard LCD, 1	/2 x 1 /2 x 1										2 6															
	Large LCD, 1 Standard LCD, 1		*****					******	م (*:	2))		F															
	0.0000000000000000000000000000000000000	/2 x 1			*****							j															
		./ Z X I	5 100			mou	incing	(50		-//		1	-														
	Terminal block	for B	[O an	d P	ws					1				1													
	Compr	ession	plug t	type	e term	inal								Å	2								0	1			
	BI/BO module														1									1			
	Choice	from I	BI/BO	tał	ble		000000000000000000000000000000000000000	0000000000000	1×B	SIO m	odule	3	1	*	1												
									2×E	SIO m	odule	es	2	*													
									3×E	SIO m	odule	es	3	*													
															:									1			
	Terminal block	~~~~~			ws									L	l												
	Ring ty	pe ter	minal											1	T								1	-			
	BI/BO module	from		+k					1.0	SIO m	adula		1	*	-												
	Choice	TIOTT	51/60	ldi	bie				ļ	SIO m			2	*	ļ												
	200000000000000000000000000000000000000										ouule	55	L 2	I													
Outline	_														1												
	Standard LCD, 3	8/4 x 1	9" rac	ck fo	or flusl	n mou	inting					3															
	Large LCD, 3	8/4 x 1	9" rac	k fo	or flusl	n mou	inting					7															
	Standard LCD, 3	8/4 x 1	9" rac	ck fo	or rack	mou	nting	(Se	e (*2	2))		G]														
	Large LCD, 3	8/4 x 1	9" rac	ck fo	or rack	mou	nting	(Se	e (*2	2))		К]														
	Terminal block													<u> </u>	<u> </u>												
	Compr	ession	plug t	type	e term	inal			·····				1										0	-			
	BI/BO module																										
	Choice	from I	31/BO	tat	ble				f	SIO m			1	*													
									}	SIO m SIO m			2	*	ļ												
									ļ	SIO m			4	*	ų												
										SIO m			5	*													
									}	SIO m			6	*	-												
	L											-	1	l	j.								I	1			
	Terminal block	for B	[O an	d P	ws					1					1												
	Ring ty													ð	-¢								1	1			
× 1	BI/BO module		*****							• • • • • • • • • • • • • • • • • • • •				[T								1	1			
	Choice	from I	BI/BO	tał	ble				1×E	SIO m	odule	9	1	*	1												
									2×E	SIO m	odule	es	2	*]												
									3×B	SIO m	odule	es	3	*	ų												
									4×E	SIO m	odule	es	4	*													

line									
S	standard	LCD,	1/1 x 19" rack for flush/rack	mounting	4				
Li	arge LCE),	1/1 x 19" rack for flush/rack	mounting	8				
Г	erminal	bloc	k for BIO and PWS						
→ '			pression plug type terminal				L	L	
в	BI/BO m								
	-		ce from BI/BO table	1×BIO module		1	*		
		Choic		2×BIO module		2	*		
				3×BIO module		- 2	*		
				4×BIO module		4	*		
				5×BIO module		5	*		
				6×BIO module		5 6	*		
				7×BIO module		7	*		
				8×BIO module		/ 8	*		
				8×BIO module	25	8		l l	
F		blac	k for BIO and PWS		1		1		
→ '			type terminal				<u> </u>		
	BI/BO m								
в				1×BIO module			*		
		Choic	ce from BI/BO table			1 7	*		
				2×BIO module		2	*		
				3×BIO module		3	ļ		
				4×BIO module		4	*		
				5×BIO module		5	*		
				6×BIO module		6	*		
				7×BIO module	es	7	*		

Note:

(*1) Binary inputs are intended for use with DC power source only.

The power supply supervision function is intended for use with DC power source only. It should be disabled when AC power supply is applied in order to prevent spurious alarms.

(*2) For 19" rack panel mounting, accessories of joint kits are available. (See Figure 16)

(*3) For PRP/HSR/RSTP protocol with IEC 61850, choose "L" or "N" code at position E. For hot/standby configuration or single port configuration with IEC 61850, choose other codes at position E.

Please contact with our sales staffs when you require user configurable models that are not indicated in the ordering sheet above.

[Software selection]

								7	М	G	Ν		Е	F	U		9	Q
Configurations	G	R	z	2	0	0	-		0	3		-				-		Ε
Application of powers	-								ſ									
Assignment on po	sition	1																
Refer to Function	Table																	
Communication for Re		Time	Sync	:h. (1))					i		i						
Assignment on po																		
Communication for Re	mote /	Time	Sync	:h. (2)													
Assignment on po	sition	" F "																
Protocol																		
IEC60870-5-103 or	IEC61	850 (S	See (*	1))											1			
IEC61850 (See (*1))														2			
Outline																		
Assignment on po	sition	"9"																
Language																		
English																		Е

Note:

(*1) For PRP/HSR/RSTP protocol with IEC 61850, choose "L" or "N" code at position E. For hot/standby configuration or single port configuration with IEC 61850, choose other codes at position E.

Number of BI/BO

BI/BO 1 x I/O module

Number	of BI/BO						Ordering	
Independent BI	Independent BI (variable)	Common BI	Fast-BO	Semi-fast BO	BO	Hybrid BO	No. (Position "A" to "B")	Configuration
7	-	-	-	6	4	-	11	1xBIO1
12	-	-	-	3	2	-	12	1xBIO2
8	-	-	6	-	2	-	13	1xBIO3
18	-	-	-	-	-	-	15	1xBI1
-	12	-	-	-	-	-	16	1xBl2
-	-	32	-	-	-	-	17	1xBI3
-	-	-	-	6	12	-	18	1xBO1

BI/BO 2 x I/O module

Number	of BI/BO					Ordering		
Independent BI	Independent BI (variable)	Common BI	Fast-BO	Semi-fast BO	BO	Hybrid BO	No. (Position "A" to "B")	Configuration
-	-	32	-	6	12	-	21	1xBI3+1xBO1
7	-	32	-	6	4	-	22	1xBI3+1xBIO1
12	-	32	-	3	2	-	23	1xBI3+1xBIO2
18	-	-	-	6	12	-	24	1xBI1+1xBO1
25	-	-	-	6	4	-	25	1xBI1+1xBIO1
30	-	-	-	3	2	-	26	1xBI1+1xBIO2
8	-	-	6	6	14	-	27	1xBO1+1xBIO3
15	-	-	6	6	6	-	28	1xBIO1+1xBIO3
7	-	-	-	12	16	-	29	1xBO1+1xBIO1
16	-	-	12	-	4	-	2A	2xBIO3
-	-	32	-	-	-	16	2B	1xBI3+1xBO2
-	12	-	-	6	12	-	2C	1xBl2 +1xBO1
20	-	-	6	3	4	-	2E	1xBIO2+1xBIO3
12	-	-	-	9	14	-	2F	1xBO1+1xBIO2
8	12	-	6	-	2	-	2G	1XBI2+1xBIO3

BI/BO 3 x I/O module

Number	of BI/BO				Ordering			
Independent BI	Independent BI (variable)	Common BI	Fast-BO	Semi-fast BO	BO	Hybrid BO	No. (Position "A" to "B")	Configuration
15	-	-	6	12	18	-	31	1xBO1+1xBIO1+1xBIO3
20	-	-	6	9	16	-	32	1xBO1+1xBIO2+1xBIO3
23	-	-	12	6	8	-	33	1xBIO1+2xBIO3
26	-	-	6	6	14	-	34	1xBI1+1xBO1+1xBIO3
8	-	32	6	6	14	-	35	1xBI3+1xBO1+1xBIO3
24	-	-	18	-	6	-	36	3xBIO3
25	-	-	-	12	16	-	37	1xBI1+1xBO1+1xBIO1
36	-	-	-	6	12	-	39	2xBI1+1xBO1
-	24	-	-	6	12	-	3A	2xBI2+1xBO1
7	-	32	-	6	4	16	3C	1xBI3+1xBIO1+1xBO2
7	-	32	-	12	16	-	3D	1xBI3+1xBO1+1xBIO1
-	-	32	-	6	12	16	3E	1xBI3+1xBO1+1xBO2
16	-	-	12	6	16	-	3G	1xBO1+2xBIO3
26	-	-	6	6	14	-	3J	1xBO1+1xBIO3+1xBI1 (*1)
-	-	64	-	6	12	-	3K	2xBI3+1xBO1
14	-	32	-	12	8	-	3L	1xBI3+2xBIO1
-	-	96	-	-	-	-	3M	3xBI3
8	12	-	6	6	14	-	3N	1xBI2+1xBO1+1xBIO3
-	-	32	-	12	24	-	3P	1xBI3 + 2xBO1
36	-	-	-	-	-	16	3Q	2xBI1 + 1xBO2
16	12	-	12	-	4	-	3S	1xBI2+2xBIO3
18	12	-	-	6	12	-	3T	1xBI1+1xBI2+1xBO1
12	-	32	-	9	14	-	3U	1xBI3+1xBO1+1xBIO2

Note: (*1) module arrangement is different from 34

BI/BO 4 x I/O modules

Independent BI) t						Ordering	
Indepe BI	Independent BI (variable)	Common BI	Fast-BO	Semi-fast BO	BO	Hybrid BO	No. (Position "A" to "B")	Configuration
26	-	-	6	12	26	-	41	1xBI1+2xBO1+1xBIO3
32	-	-	24	-	8	-	42	4xBIO3
8	-	32	6	12	26	-	43	1xBI3+2xBO1+1xBIO3
-	-	64	-	12	24	-	44	2xBI3+2xBO1
54	-	-	-	6	12	-	46	3xBI1+1xBO1
20	-	32	6	9	16	-	47	1xBI3+1xBO1+1xBIO2 +1xBIO3
26	-	-	6	12	26	-	48	1xBO1+1xBI1+1xBO1 +1xBIO3 (*3)
20			6	15	28		49	2xBO1+1xBIO2+1xBIO3
34	-	-	12	6	16	-	4B	1xBI1+1xBO1+2xBIO3
-	-	64	-	-	-	32	4C	2xBI3+2xBO2
21	-	32	-	18	12	-	4D	1xBI3+3xBIO1
-	-	128	-	-	-	-	4E	4xBl3
7		96		6	4		4F	3xBI3+1xBIO1
8	24	-	6	6	14	-	4G	2xBI2 +1xBO1 +1xBIO3
-	-	32	-	18	36	-	4H	1xBI3 + 3xBO1
26	12	-	6	6	14	-	4J	1xBI1 + 1xBI2 + 1xBO1 + 1xBIO3
24	-	32	-	12	16	-	4K	1xBI3+1xBO1+2xBIO2
15	-	-	6	18	30	-	4L	2xBO1+1xBIO1+1xBIO3
7	-	-	-	24	40	-	4M	3xBO1+1xBIO1
36	-	-	-	12	24	-	4N	2xBI1+2xBO1
8	-	64	6	6	14	-	4P	2xBI3+1xBO1+1xBIO3
36	-	-	-	6	12	16	4Q	2xBI1+1xBO1+1xBO2
44	-	-	6	6	14	-	4R	2xBI1+1xBO1+1x BIO3

BI/BO 5 x I/O modules

Number	of BI/BO						Ordering	
Independent BI	Independent BI (variable)	Common BI	Fast-BO	Semi-fast BO	BO	Hybrid BO	No. (Position "A" to "B")	Configuration
33	-	-	6	6	6	32	51	1xBI1+1xBIO1+1xBIO3 +2xBO2
44	-	-	6	12	26	-	52	2xBI1+2xBO1+1xBIO3
25	-	96	-	6	4	-	53	1xBI1+3xBI3+1xBIO1
8	-	96	6	6	14	-	54	3xBI3+1xBO1+1xBIO3
62	-	-	6	6	14	-	56	3xBI1+1xBO1+1xBIO3
-	-	96	-	12	24	-	5B	3xBI3+2xBO1
-	-	128	-	6	12	-	5E	4xBI3+1xBO1
-	-	160	-	-	-	-	5F	5xBl3
44	12	-	6	6	14	-	5G	2xBI1+1xBI2+1xBO1 +1xBIO3
15	-	-	6	24	42	-	5H	3xBO1+1xBIO1+1xBIO3
-	-	64	-	18	36	-	5J	2xBI3+3xBO1
-	-	-	-	30	60	-	5L	5xBO1
42	-	-	18	6	18	-	5P	1xBO1+1xBIO1+3xBIO3
41	-	-	12	12	20	-	5Q	1xBI1+1xBO1+1xBIO1 +2xBIO3
8	-	64	6	-	2	32	5R	2xBI3+1xBIO3+2xBO2
8	12	64	6	-	2	16	5S	1xBI2+2xBI3+1xBIO3 +1xBO2
38	24	-	-	6	12	-	5U	2xBI1+2xBI2+1xBO1

BI/BO 6 x I/O modules

Number	of BI/BO						Ordering	
Independent BI	Independent BI (variable)	Common BI	Fast-BO	Semi-fast BO	BO	Hybrid BO	No. (Position "A" to "B")	Configuration
51	-	-	6	18	30	-	61	2xBI1+2xBO1+1xBIO1 +1xBIO3
8	-	96	6	12	26	-	62	3xBI3+2xBO1+1xBIO3
-	-	128	-	12	24	-	63	4xBI3+2xBO1
8	-	128	6	6	14	-	64	4xBI3+1xBO1+1xBIO3
52	-	-	12	-	4	32	69	2xBI1+2xBIO3+2xBO2
52	-	-	12	12	28	-	6A	2xBI1+2xBO1+2xBIO3
36	-	-	-	24	48	-	6B	2xBI1+4xBO1
36	-	64	-	12	24	-	6C	2xBI1+2xBI3+2xBO1
44	-	-	6	18	38	-	6D	2xBI1+3xBO1+1xBIO3
-	-	160	-	6	12	-	6E	5xBI3+1xBO1
7	-	160	-	6	4	-	6F	5xBI3+1xBIO1
8	-	64	6	-	2	48	6G	2xBI3+1xBIO3+3xBO2
26	-	64	6	-	2	32	6H	1xBI1+2xBI3+1xBIO3 +2xBO2
8	12	64	6	6	14	16	6J	1xBl2+2xBl3+1xBO1 +1xBlO3+1xBO2

BI/BO 7 x I/O modules

Number	of BI/BO						Ordering	
Independent BI	Independent BI (variable)	Common BI	Fast-BO	Semi-fast BO	BO	Hybrid BO	No. (Position "A" to "B")	Configuration
80	-	-	6	12	26	-	71	4xBI1+2xBO1+1xBIO3
8	-	96	6	18	38	-	73	3xBI3+3xBO1+1xBIO3
-	60	-	-	6	12	16	78	5xBl2+1xBO1+1xBO2
-	-	160	-	12	24	-	79	5xBI3+2xBO1
54	-	64	-	12	24	-	7B	3xBI1 + 2xBI3 + 2xBO1
-	-	128	-	18	36	-	7D	4xBI3+3xBO1
7	-	160	-	12	16	-	7E	5xBI3+1xBO1+1xBIO1
-	-	192	-	6	12	-	7F	6xBl3+1xBO1
7	-	192	-	6	4	-	7G	6xBI3+1xBIO1
-	-	224	-	-	-	-	7H	7xBl3
8	-	96	6	-	2	48	7L	3xBI3+1xBIO3+3xBO2

BI/BO 8 x I/O modules

Number of BI/BO					Ordering			
Independent BI	Independent BI (variable)	Common BI	Fast-BO	Semi-fast BO	BO	Hybrid BO	No. (Position "A" to "B")	Configuration
-	-	160	-	18	36	-	83	5xBI3+3xBO1
-	60	-	-	6	12	32	87	5xBl2+1xBO1+2xBO2
8	-	128	6	18	38	-	88	4xBI3+3xBO1+1xBIO3
-	-	256	-	-	-	-	8C	8xBI3
7	-	224	-	6	4	-	8G	7xBI3+1xBIO1
-	-	192	-	12	24	-	8H	6xBI3+2xBO1
7	-	192	-	12	16	-	8J	6xBI3+1xBO1+1xBIO1
7	-	96	-	30	52	-	8M	3xBI3+4xBO1+1xBIO1
-	-	128	-	24	48	-	8N	4xBI3+4xBO1

Serial and/or Ethernet and/or Time Synch port IEC60870-5-103 IEC61850-8-1 Ordering No. 100Base-TX/ 1000Base-T 1000Base-LX 100Base-FX (*1) (Position "E" Remark Fiber optic (for serial) to "F") **RS485** IRIG-B 1J 1K ЗJ 3K Hot/standby 4C 4G 4L Hot/standby 4M Hot/standby 4N 4Q 4S 4U Hot/standby 6C 6G 6L Hot/standby Hot/standby 6M 6N 6Q 6S 6U 7D 7H 7P 7R 7T 7V Hot/standby 9D 9H 9P 9R 9T 9V L6 LD LH LL LM For LΡ PRP/HSR/ LR RSTP LT LV N6 ND NH

Communication port Table

Serial and	d/or Ethern						
IEC60870-5-103		IEC61850-8-1					
RS485	Fiber optic (for serial)	100Base-FX (*1)	100Base-TX/ 1000Base-T	1000Base-LX	IRIG-B	Ordering No. (Position "E" to "F")	Remark
			2		1	NL	
				2	1	NM	_
1			2		1	NP	For PRP/HSR/
1				2	1	NR	RSTP
	1		2		1	NT	
	1			2	1	NV	

Note: (*1) When 100Base-FX is selected, 2 slots out of 5 slots for communication ports are used regardless the number of 100Base-FX (1 or 2). Therefore, the total number for communication ports needs to be cared.

FUNCTION TABLE

		Ordering No. (Position "G & N")			
Function Block	Protection 1	function	(Position 31	"G & N") 32	
DISTANCE_ZS	21	Distance protection(for phase fault) with 6zone			
(6zone)	68	Power swing block	•	•	
	50SOTF	Switch on to fault protection			
DISTANCE_ZG	21N	Distance protection(for earth fault) with 6zone			
(6zone)	68	Power swing block	•	•	
	50SOTF	Switch on to fault protection			
DEFCAR	85-67N	Directional earth fault carrier command protection	•	•	
DISCAR	85-21	Distance carrier command protection	•	•	
OC	50/67	Non-directional / directional definite time over- current protection	•	•	
	51/67	Non-directional / directional inverse time over- current protection	-		
EF	50N/67N	Non-directional / directional definite time earth fault over-current protection			
	51N/67N	Non-directional / directional inverse time earth fault over-current protection	•	•	
OCN	46/67	Non-Directional / directional Negative sequence phase over-current protection	•	•	
THM	49	Thermal overload protection	•	•	
BCD	46BC	Broken conductor protection	•	•	
CBF	50BF	Circuit breaker failure protection	•	•	
STUB OC	50STUB	Stub protection	•	•	
OV	59	Phase over-voltage protection	•	•	
OVS	59	Phase-phase over-voltage protection	•	•	
OVG	59N	Earth fault over-voltage protection	•	•	
UV	27	Phase under-voltage protection	•	•	
UVS	27	Phase-phase under-voltage protection	•	•	
FRQ	81	Frequency protection	•	•	
OSTZ	56Z	Out of step tripping by distance	•	•	
ICD	ICD	Inrush current detection function	•	•	
FS	FS	Fail-safe function	•	•	
VTF	VTF	VTF detection function	•	•	
CTF FL-Z	CTF 21FL	CTF detection function Fault locator	•	•	
ARC	79		•	•	
VCHK	25	Autoreclosing function	•	•	
TRC	25 94	Voltage check for autoreclosing Trip circuit	•	•	
INC	LEDR		•	•	
Gen Ctrl		LED reset	•	•	
Gen Cin	GCNT MDCTRL	Counter function for the general Mode control function	•	•	
	SPOS	Single position device function	-	•	
	DPSY	Double position controller with synchronizing		•	
	SOTFSW	Software switch controller		•	
	OPTIM	Operation time reset		•	
	TOTALTI	Total time measurement		•	
Ctrl and	SYNDIF	Synchronizing check for different network		•	
Monitor	INTERLO			-	
	CK	Software interlock		•	
	DPOS	Double position device function		•	
	TPOS	Three position device function		•	
	GENBI	Event detection function for general BIs		•	
	ASEQ	Automatic sequence control function		•	
			Basic	Basic with Control	

DIMENSION AND PANEL CUT-OUT (1/2 size)

(Panel cut-out)

Note: For a rack mount unit, there are holes for joint kits assembling on top and bottom of the unit.

Figure 13 – Dimension and Panel Cut-out – 1/2 x 19" case size

(when compression plug type terminals are applied)

DIMENSION AND PANEL CUT-OUT (3/4 size)

Note: For a rack mount unit, there are holes for joint kits assembling on top and bottom of the unit.

Figure 14 – Dimension and Panel Cut-out – 3/4 x 19" case size for flush mounting type

(when compression plug type terminals are applied)

DIMENSION AND PANEL CUT-OUT (1/1 size)

Note: For a rack mount unit, there are holes for joint kits assembling on top and bottom of the unit.

Figure 15 – Dimension and Panel Cut-out – 1/1 x 19" case size for flush mounting type

(when compression plug type terminals are applied)

19" RACK MOUNTING JOINT KITS ATTACHMENT

<panel kits="" mounting="" only<="" th="" –=""><th>y for compressed terminal type racks></th></panel>	y for compressed terminal type racks>

Name	Code
Joint kits for single 1/2 x 19" size rack	EP-204
Joint kits for two 1/2 x 19" size racks	EP-205
Joint kits for single 3/4 x 19" size rack	EP-206

Figure 16 – Joint kits example for 19" rack panel mounting

CONNECTIONS DIAGRAM

- (*1) Fast BO (*2) Semi-fast BO (*3) Hybrid BO (*4) Normal BO
- (*5) Form-C BO

Figure 17 – Binary input board and binary output module for compression plug type

CONNECTIONS DIAGRAM

- (*1) Fast BO (*2) Semi-fast BO (*3) Hybrid BO (*4) Normal BO
- (*5) Form-C BO

Figure 18 – Combined binary input and output module and DC power supply module for compression plug type

CONNECTIONS DIAGRAM

CT/VT module

Module no. 12 (CT x 5 + VT x 5)

Figure 19 – CT/VT module

EXTERNAL CONNECTION DIAGRAM

Figure 20 – Typical external connection diagram (PCT: No.12, IO: BI1, BO1 and BIO3)

$\boldsymbol{\cdot}$ The information given in this catalog is subject to change without notice.

- \cdot The information given in this catalog is as of 17 April 2020.
- The information given in this catalog is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- Toshiba does not take any responsibility for incidental damage (including loss of business profit, business interruption, loss of business information and other pecuniary damage) arising out of the use or disability to use the products.

TOSHIBA

TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION

72-34, Horikawa-cho, Saiwai-ku, Kawasaki 212-8585, Japan -Tel +81-44-331-1462 Fax +81-44-548-9540 http://www.toshiba-relays.com